已收录 273594 条政策
 政策提纲
  • 暂无提纲
Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field
[摘要] In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.
[发布日期] 2010-09-01 [发布机构] 
[效力级别]  [学科分类] 物理(综合)
[关键词] BERYLLIUM;CAVITIES;DIPOLES;ELECTRIC FIELDS;ELECTRONS;FIELD EMISSION;FOCUSING;HYDROGEN;IONIZATION;MAGNETIC FIELDS;MUON BEAMS;MUONS;PERFORMANCE;PHASE SPACE;SIMULATION;WINDOWS General Physic [时效性] 
   浏览次数:30      统一登录查看全文      激活码登录查看全文