An economic analysis of mobile pyrolysis for northern New Mexico forests.
[摘要] In the interest of providing an economically sensible use for the copious small-diameter wood in Northern New Mexico, an economic study is performed focused on mobile pyrolysis. Mobile pyrolysis was selected for the study because transportation costs limit the viability of a dedicated pyrolysis plant, and the relative simplicity of pyrolysis compared to other technology solutions lends itself to mobile reactor design. A bench-scale pyrolysis system was used to study the wood pyrolysis process and to obtain performance data that was otherwise unavailable under conditions theorized to be optimal given the regional problem. Pyrolysis can convert wood to three main products: fixed gases, liquid pyrolysis oil and char. The fixed gases are useful as low-quality fuel, and may have sufficient chemical energy to power a mobile system, eliminating the need for an external power source. The majority of the energy content of the pyrolysis gas is associated with carbon monoxide, followed by light hydrocarbons. The liquids are well characterized in the historical literature, and have slightly lower heating values comparable to the feedstock. They consist of water and a mix of hundreds of hydrocarbons, and are acidic. They are also unstable, increasing in viscosity with time stored. Up to 60% of the biomass in bench-scale testing was converted to liquids. Lower ({approx}550 C) furnace temperatures are preferred because of the decreased propensity for deposits and the high liquid yields. A mobile pyrolysis system would be designed with low maintenance requirements, should be able to access wilderness areas, and should not require more than one or two people to operate the system. The techno-economic analysis assesses fixed and variable costs. It suggests that the economy of scale is an important factor, as higher throughput directly leads to improved system economic viability. Labor and capital equipment are the driving factors in the viability of the system. The break-even selling price for the baseline assumption is about $11/GJ, however it may be possible to reduce this value by 20-30% depending on other factors evaluated in the non-baseline scenarios. Assuming a value for the char co-product improves the analysis. Significantly lower break-even costs are possible in an international setting, as labor is the dominant production cost.
[发布日期] 2011-12-01 [发布机构]
[效力级别] [学科分类] 燃料技术
[关键词] BIOMASS;CARBON MONOXIDE;CHARS;ECONOMIC ANALYSIS;ECONOMICS;FORESTS;FURNACES;GASES;HEATING;HYDROCARBONS;NATURE RESERVES;NEW MEXICO;PYROLYSIS;TESTING;VIABILITY;VISCOSITY;WATER;WOOD [时效性]