Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source
[摘要] We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.
[发布日期] 2011-08-17 [发布机构]
[效力级别] [学科分类] 核物理和高能物理
[关键词] ELECTRON BEAMS;ELECTRONS;FOCUSING;FREE ELECTRON LASERS;LIGHT SOURCES;LINEAR ACCELERATORS;ORIGIN;PEAK LOAD;PHOTONS;SATURATION;WAVELENGTHS;WIGGLER MAGNETS XFEL [时效性]