Improved Production and Separation Technologies for Non-standard PET Radionuclides
[摘要] Brief summary of activity issues, concerns, successes: Project 1 is completed. We have optimized plating parameters with the new target bodies and slanted target plating system. The target station has been mounted on the end of the beamline, service lines have been nstalled to allow for helium and water cooling. We have routinely produced copper-64 using the new slanted target system in conjunction with our automated system. In project 2, we successfully fabricated and tested microfluidic extraction devices made out of two organic solvent-resistant polymers, thiolene and SIFEL. Initially, we developed analytical and computational models to describe the extraction process, and used the model to design the microfluidic devices. Then we optimized the microfabrication procedures to manufacture microreactors, followed by optimization of the operational parameters to obtain a stable aqueous-organic interface, which is critical for efficient extraction. When we tested the thiolene devices for extraction of copper-64, we observed very low extraction efficiencies (less than 5%) due to adhesion of copper to thiolene. However, we observed very high extraction efficiencies with SIFEL devices (greater than 95%), which are due to the high interfacial area for extraction and shorter diffusion lengths.
[发布日期] 2012-12-01 [发布机构]
[效力级别] [学科分类] 核物理和高能物理
[关键词] [时效性]