已收录 273175 条政策
 政策提纲
  • 暂无提纲
Final Report [The c-Abl signaling network in the radioadaptive response]
[摘要] The radioadaptive response, or radiation hormesis, i.e. a low dose of radiation can protect cells and organisms from the effects of a subsequent higher dose, is a widely recognized phenomenon. Mechanisms underlying such radiation hormesis, however, remain largely unclear. Preliminary studies indicate an important role of c-Abl signaling in mediating the radioadaptive response. We propose to investigate how c-Abl regulates the crosstalk between p53 and NF??B in response to low doses irradiation. We found in our recent study that low dose IR induces a reciprocal p53 suppression and NF??B activation, which induces HIF-a and subsequently a metabolic reprogramming resulting in a transition from oxidative phosphorylation to glycolysis. Of importance is that this glycolytic switch is essential for the radioadaptive response. This low-dose radiationinduced HIF1?? activation was in sharp contrast with the high-dose IR-induced p53 activation and HIF1?? inhibition. HIF1?? and p53 seem to play distinct roles in mediating the radiation dose-dependent metabolic response. The induction of HIF1??-mediated glycolysis is restricted to a low dose range of radiation, which may have important implications in assessing the level of radiation exposure and its potential health risk. Our results support a dose-dependent metabolic response to IR. When IR doses are below the threshold of causing detectable DNA damage (<0.2Gy) and thus little p53 activation, HIF1?? is induced resulting in induction of glycolysis and increased radiation resistance. When the radiation dose reaches levels eliciting DNA damage, p53 is activated and diminishes the activity of HIF1?? and glycolysis, leading to the induction of cell death. Our work challenges the LNT model of radiation exposure risk and provides a metabolic mechanism of radioadaptive response. The study supports a need for determining the p53 and HIF1?? activity as a potential reliable biological readout of radiation exposure in humans. The exquisite sensitivity of cellular metabolism to low doses of radiation could also serve as a valuable biomarker for estimating the health effects of low-level radiation exposure.
[发布日期] 2014-01-28 [发布机构] 
[效力级别]  [学科分类] 生物科学(综合)
[关键词]  [时效性] 
   浏览次数:13      统一登录查看全文      激活码登录查看全文