The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report
[摘要] Overview of University of Colorado Efforts: The University of Colorado group has focused on two primary fronts during the grant period: development of a variety of multi-point diagnostic and/or imaging analysis techniques, and momentum-transport related experiments on a variety of devices (NSTX at PPPL, CSDX at UCSD, LAPD at UCLA, DIII-D at GA). Experimental work has taken advantage of several diagnostic instruments, including fast-framing cameras for imaging of electron density fluctuations (either directly or using injected gas puffs), ECEI for imaging of electron temperature fluctuations, and multi-tipped Langmuir and magnetic probes for corroborating measurements of Reynolds and Maxwell stresses. Mode Characterization in CSDX: We have performed a series of experiments at the CSDX linear device at UCSD, in collaboration with Center PI G. Tynan's group. The experiments included a detailed study of velocity estimation techniques, including direct comparisons between Langmuir probes and image-based velocimetry from fast-framing camera data. We used the camera data in a second set of studies to identify the spatial and spectral structure of coherent modes, which illuminates wave behavior to a level of detail previously unavailable, and enables direct comparison of dispersion curves to theoretical estimates. In another CSDX study, similar techniques were used to demonstrate a controlled transition from nonlinearly coupled discrete eigenmodes to fully developed broadband turbulence. The axial magnetic field was varied from 40-240 mT, which drove the transition. At low magnetic fields, the plasma is dominated by drift waves. As the magnetic field is increased, a strong potential gradient at the edge introduces an ExB shear-driven instability. At the transition, another mode with signatures of a rotation-induced Rayleigh???Taylor instability appears at the central plasma region. Concurrently, large axial velocities were found in the plasma core. For larger magnetic fields, all of the instabilities co-exist, leading to rich plasma dynamics and fully developed broadband turbulence. Edge-Turbulence and Flow Experiments in NSTX: A series of Gas Puff Imaging (GPI) observations on NSTX revealed a quasi-periodic oscillation in the plasma edge preceding the L-H transition in a limited set of neutral beam heated plasmas. These ~3 kHz flow oscillations exhibit both long wavelength and long correlation lengths, suggesting they are zonal-flow-like. The flow oscillations are strongly correlated with modulations of the level of edge turbulence, thus the system appears to undergo a predator--prey-type limit-cycle preceding the L-H transition. However, a clear trigger for the L-H transition was not observed. Reynolds stress profiles were obtained directly from image velocimetry for L-mode periods ELM-Precursor Studies in NSTX: A separate study based on NSTX-GPI data captured the two-dimensional evolution of edge-localized mode (ELM) precursors. Precursor events were observed preceding ELMs and ELM-induced H???L back-transitions in radio-frequency heated H-mode plasmas, and the growth of the precursor mode through the ELM filamentation was imaged in the plane perpendicular to the local B-field. Strong edge intensity modulations appeared to propagate in the electron diamagnetic direction while steadily drifting radially outwards. Intensity fluctuations were observed at frequencies around 20 kHz and wavenumbers of 0.05-0.2 cm-1. Upon growing to a trigger point, precursor fluctuations were seen to form filamentary structures and move into the scrape-off layer (SOL) explosively with radial velocities peaking at 8 km/s. Once in the SOL, filaments reverse their propagation direction and travel in the ion diamagnetic direction. Edge intensity fluctuations were strongly correlated with magnetic signals from Mirnov coils, and toroidally distributed coils estimated toroidal mode numbers of n=5-10. Quantitatively similar precursors have been observed in ohmic H-mode plasmas as well, though significantly fewer events are seen in the ohmic cases and none were observed in the near-threshold NBI H-modes studied. Development of Velocimetry and Image Analysis Techniques: Along with the experiments listed above, the Colorado group has continued to explore various velocimetry techniques and their range of validity. We have developed a ???linear optical flow??? code, which calculates smooth velocity maps while accurately assessing local regions of high curl. This is critical for separating spatial scales of velocity behavior, and thus transport. This code has recently come on-line, and we are currently using it to revisit a number of older datasets. Additionally, we have worked on developing pattern-recognition techniques for imaging diagnostics, based on established digital image compression algorithms. This has the potential to open the analysis of turbulent plasma behavior beyond the well-trodden Fourier and wavelet approaches. Finally, we have extended several of these image-analysis routines to multiple other diagnostic sets, including GPI datasets in NSTX and ECEI imaging on DIII-D. In one study, correlation maps were used to measure the full 2-D mode structure of drift-wave level structures using ECEI for the first time. This enabled direct comparison to gyrokinetic simulations using the GEM code, from which is was determined that TEM modes were being measured in DIII-D.
[发布日期] 2015-12-14 [发布机构]
[效力级别] [学科分类] 原子、分子光学和等离子物理
[关键词] EDGE LOCALIZED MODES;NSTX DEVICE;VELOCITY;H-MODE PLASMA CONFINEMENT;DOUBLET-3 DEVICE;RAYLEIGH-TAYLOR INSTABILITY;FLUCTUATIONS;COLORADO;PLASMA;COMPARATIVE EVALUATIONS;L-MODE PLASMA CONFINEMENT;PRECURSOR;IMAGE PROCESSING;KHZ RANGE 01-100;MAGNETIC FIELDS;PLASMA SCRAPE-OFF LAYER;IMAGES;TURBULENCE;LANGMUIR PROBE;CAMERAS;ELECTRONS;OSCILLATIONS;LIMIT CYCLE;MAGNETIC PROBES;WAVE PROPAGATION;CORRELATIONS;LENGTH;MAPS;MODULATION;PERIODICITY;POTENTIALS;ROTATION;STRESSES;ELECTROMAGNETIC FIELDS;ELECTRON DENSITY;ELECTRON TEMPERATURE;NONLINEAR PROBLEMS;PATTERN RECOGNITION;TWO-DIMENSIONAL CALCULATIONS;TIME DEPENDENCE;FILAMENTS;SHEAR;COMPUTERIZED SIMULATION;UCLA;RESEARCH PROGRAMS;PLASMA DIAGNOSTICS [时效性]