A Data Analysis Center for Electromagnetic and Hadronic Interaction. Products of the DAC members
[摘要] The Data Analysis Center (DAC) of the Center for Nuclear Studies (CNS) at the George Washington University (GW) has made significant progress in its program to enhance and expand the partial-wave (and multipole) analyses of fundamental two- and three-body reactions (such as pion-nucleon, photon-nucleon, and nucleon-nucleon scattering) by maintaining and augmenting the analysis codes and databases associated with these reactions. These efforts provide guidance to experimental groups at the international level, forming an important link between theory and experiment. A renaissance in light hadron spectroscopy is underway as a continuous stream of polarization data issues from existing precision electromagnetic facilities and the coming Jefferson Lab 12 GeV Upgrade. Our principal goals have been focused on supporting the national N* resonance physics program. We have also continued to study topics more generally related to the problems associated with partial-wave analysis. On the Experimental side of the CNS DAC. Its primary goal is the enhancement of the body of data necessary for our analyses of fundamental ?? - N reactions. We perform experiments that study the dynamics responsible for the internal structure of the nucleon and its excitations. Our principal focus is on the N* programs at JLab and MAMI. At JLab we study spin-polarization observables using polarized photons, protons and neutrons and yielding charged final states. Similarly at MAMI we study neutral meson photoproduction off polarized protons and neutrons. We use the Crystal Ball and TAPS spectrometers (CBT) to detect photons and neutrons to measure the photoproduction of ??0, ?��, 2??0, ??0?��, and K0 off the neutron. The CBT program complements our program at JLab, which studies reactions resulting in charged final states. We are also involved in a renewed effort to make neutral pion photoproduction measurements close to threshold at Mainz. In addition to the programs underway, we are contributing to the future by participation in preparations for the coming JLab 12 GeV Upgrade. GW students are involved in tests of the detectors proposed to be used with CLAS12, i.e., for the CentralTime-of-Flight Barrel (CTOF). WJB is heavily involved in the MUSE quest at PSI to solve the Proton Radius Puzzle.
[发布日期] 2015-08-31 [发布机构]
[效力级别] [学科分类] 核物理和高能物理
[关键词] Nucleon Structure;Few-Body Physics;Photoproduction;Electroproduction;Properties of the Nucleon [时效性]