Towards a map of the Populus biomass protein-protein interaction network
[摘要] Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in-depth characterizations. Characterizations involved both in vivo and in vitro independent methods to confirm protein-protein interactions and the evaluation of novel phenotypes resulting from creation of transgenic poplar and Arabidopsis plants engineered for increased or decreased expression of the selected genes. Transgenic poplar trees were studied in growth chamber, greenhouse, and two separate replicated field trials involving over 25 distinct wood-associated proteins. In-depth characterizations yielding positive results include the following. First, a NAC domain transcription factor (NAC154) that is a promoter of stress response and dormancy in trees was discovered. Increasing expression of NAC154 caused stunted growth and premature senescence, while decreasing expression led to both delayed bud and leaf expansion in spring and delayed leaf drop (i.e., prolonged leaf retention) in fall. Second, we discovered and characterized a new connection between a negative regulator of wood formation, the NAC domain transcription factor XND1, and an important regulator of cell division and cell differentiation, RBR. Third, we identified a new network of interacting wood-associated transcription factors belonging to the MYB and HD families. One of the HD family proteins, WOX13, was used to prepare transgenic poplar for high-level expression, resulting in significantly increased lateral branch growth. Finally, we modeled and performed in vitro analyses of the insect protein rubber resilin and we prepared transgenic Arabidopsis plants for expression of resilin to test the feasibility of using resilin to modify lignin cross-linking in wood and reduce recalcitrance and improve yield of fermentable sugars for biofuels production. Analysis of these and additional transgenics created with this support is continuing.
[发布日期] 2015-07-31 [发布机构]
[效力级别] [学科分类] 燃料技术
[关键词] Xylem;Woody Biomass;Protein Interactome [时效性]