已收录 272892 条政策
 政策提纲
  • 暂无提纲
Level II scour analysis for Bridge 41 (ROCKTH00390041) on Town Highway 39, crossing the Saxtons River, Rockingham, Vermont
[摘要]

This report provides the results of a detailed Level II analysis of scour potential at structure ROCKTH00390041 on Town Highway 39 crossing the Saxtons River, Rockingham, Vermont (figures 1�C8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.


The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 57.4-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of forest on the left bank and pasture with some trees on the right bank.


In the study area, the Saxtons River has an sinuous channel with a slope of approximately 0.009 ft/ft, an average channel top width of 112 ft and an average bank height of 10 ft. The channel bed material ranges from sand to cobbles with a median grain size (D50) of 103 mm (0.339 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 15, 1996, indicated that the reach was laterally unstable. There are wide point bars, cut-banks with fallen trees, and areas of localized channel scour along the left bank, where there is bedrock exposure at the surface.


The Town Highway 39 crossing of the Saxtons River is an 85-ft-long, one-lane bridge consisting of one 82-foot steel-beam span (Vermont Agency of Transportation, written communication, March 31, 1995). The bridge is supported by vertical, concrete abutments without wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is zero degrees.


A scour hole 3 ft deeper than the mean thalweg depth was observed during the Level I assessment along the left side of the channel under the bridge exposing the left abutment footing 5.5 feet. The only scour protection measure at the site was type-2 stone fill (less than 36 inches diameter) on the left banks upstream and downstream and the left abutment wall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.


Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.


Contraction scour for all modelled flows ranged from 2.2 to 3.8 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 21.4 to 23.2 feet and 26.2 to 32.4 feet at the left and right abutments respectively. The worst-case abutment scour occurred for the right abutment at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled ��Scour Results��. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Bedrock was exposed at the surface in some areas of the channel and potentially is located at a shallower depth than the scour depths indicated above. Nevertheless, scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.


It is generally accepted that the Froehlich equation (abutment scour) gives ��excessively conservative estimates of scour depths�� (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

[发布日期]  [发布机构] U.S. Geological Survey
[效力级别]  [学科分类] 地球科学(综合)
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文