已收录 272962 条政策
 政策提纲
  • 暂无提纲
An experimental device for critical surface characterization of YBCO tape superconductors
[摘要] The twisting stacked tape cabling (TSTC) method for YBCO superconductors is very attractive for high current density, high magnetic field applications, such as nuclear fusion reactors and high energy physics experiments. Industrial scale assembling methods have been proposed, and cable samples have been tested at 77 K and 4.2 K. A new experimental device has been designed and built to measure critical current of YBCO tapes and TSTC as a function of magnetic field and temperature. The probe allows controlling the temperature between 4.2 K and 80 K within +/-1 K in liquid and gaseous helium ambient, and can be used in a 2 T magnet facility at MIT-PSFC and a 14 T magnet facility at NHMFL-FSU. Its current leads are designed to carry up to 5 kA. The device consists in a 0.9 m long, 25 x 38 mm rectangular vacuum-insulated canister. The superconducting sample and a superconducting current return lead fit inside the canister, in such a way that the Lorentz force and torque produced by the external magnetic field is cancelled. The sample temperature is controlled in a 200 mm long area inside the canister where critical current measurements are performed. Critical current measurements were performed on a single YBCO tape at self-field at temperatures between 20 K and 70 K. The results are similar to data provided by the superconductor;;s manufacturer. The temperature reached the set point in approximately 10 minutes, and was controlled within +/-1 K. Results of heating power required and difference between set point temperature and measured temperature as functions of set point temperature are presented for two temperature control methods.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:7      统一登录查看全文      激活码登录查看全文