Model reduction techniques for probabilistic verification of Markov chains
[摘要] Probabilistic model checking is a quantitative verification technique that aims to verify the correctness of probabilistic systems. Nevertheless, it suffers from the so-called state space explosion problem. In this thesis, we propose two new model reduction techniques to improve the efficiency and scalability of verifying probabilistic systems, focusing on discrete-time Markov chains (DTMCs). In particular, our emphasis is on verifying quantitative properties that bound the time or cost of an execution. We also focus on methods that avoid the explicit construction of the full state space. We first present a finite-horizon variant of probabilistic bisimulation for DTMCs, which preserves a bounded fragment of PCTL. We also propose another model reduction technique that reduces what we call linear inductive DTMCs, a class of models whose state space grows linearly with respect to a parameter. All the techniques presented in this thesis were developed in the PRISM model checker. We demonstrate the effectiveness of our work by applying it to a selection of existing benchmark probabilistic models, showing that both of our two new approaches can provide significant reductions in model size and in some cases outperform the existing implementations of probabilistic verification in PRISM.
[发布日期] [发布机构] University:University of Birmingham;Department:School of Computer Science
[效力级别] [学科分类]
[关键词] Q Science;QA Mathematics;QA75 Electronic computers. Computer science [时效性]