已收录 272993 条政策
 政策提纲
  • 暂无提纲
Thermal energy storage using carbonate-salt-based composite phase change materials: linking materials properties to device performance
[摘要] Thermal energy storage (TES) has a crucial role to play in conserving and efficiently utilising energy, dealing with mismatch between demand and supply, and enhancing the performance and reliability of our current energy systems. This thesis concerns TES materials and devices with an aim to establish a relationship between TES device level performance to materials properties. This is a multiscale problem. The work focuses on the use of carbonate-salt-based composite phase change materials (CPCMs) for medium and high temperature applications. A CPCM consists of a carbonate salt based phase change material (PCM), a thermal conductivity enhancement material (TCEM, graphite flake in this work) and a ceramic skeleton material (CSM, MgO in this work). Both mathematical modelling and experiments were carried out to address the multiscale problem. The wettability of carbonate salt and MgO system is first studied, followed by exploring the CPCMs microstructure characteristics and formation mechanism, and then the effective thermal conductivity of the CPCMs is carried out based on the developed microstructures. At the last part, heat transfer behaviour of CPCMs based TES at component and device levels is investigated.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Chemical Engineering
[效力级别]  [学科分类] 
[关键词] T Technology;TP Chemical technology [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文