已收录 273081 条政策
 政策提纲
  • 暂无提纲
Robust expansion and hamiltonicity
[摘要] This thesis contains four results in extremal graph theory relating to the recent notion of robust expansion, and the classical notion of Hamiltonicity. In Chapter 2 we prove that every sufficiently large ‘robustly expanding’ digraph which is dense and regular has an approximate Hamilton decomposition. This provides a common generalisation of several previous results and in turn was a crucial tool in Kühn and Osthus’s proof that in fact these conditions guarantee a Hamilton decomposition, thereby proving a conjecture of Kelly from 1968 on regular tournaments.In Chapters 3 and 4, we prove that every sufficiently large 3-connected \(D\)-regular graph on \(n\) vertices with \(D\) ≥ n/4 contains a Hamilton cycle. This answers a problem of Bollobás and Häggkvist from the 1970s. Along the way, we prove a general result about the structure of dense regular graphs, and consider other applications of this. Chapter 5 is devoted to a degree sequence analogue of the famous Pósa conjecture. Our main result is the following: if the \(i\)\(^{th}\) largest degree in a sufficiently large graph \(G\) on n vertices is at least a little larger than \(n\)/3 + \(i\) for \(i\) ≤ \(n\)/3, then \(G\) contains the square of a Hamilton cycle.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Mathematics
[效力级别]  [学科分类] 
[关键词] Q Science;QA Mathematics [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文