已收录 273192 条政策
 政策提纲
  • 暂无提纲
Population based spatio-temporal probabilistic modelling of fMRI data
[摘要] High-dimensional functional magnetic resonance imaging (fMRI) data is characterized by complex spatial and temporal patterns related to neural activation. Mixture based Bayesian spatio-temporal modelling is able to extract spatiotemporal components representing distinct haemodyamic response and activation patterns. A recent development of such approach to fMRI data analysis is so-called spatially regularized mixture model of hidden process models (SMM-HPM). SMM-HPM can be used to reduce the four-dimensional fMRI data of a pre-determined region of interest (ROI) to a small number of spatio-temporal prototypes, sufficiently representing the spatio-temporal features of the underlying neural activation. Summary statistics derived from these features can be interpreted as quantification of (1) the spatial extent of sub-ROI activation patterns, (2) how fast the brain respond to external stimuli; and (3) the heterogeneity in single ROIs. This thesis aims to extend the single-subject SMM-HPM to a multi-subject SMM-HPM so that such features can be extracted at group-level, which would enable more robust conclusion to be drawn.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Computer Science
[效力级别]  [学科分类] 
[关键词] Q Science;QA Mathematics;QA75 Electronic computers. Computer science [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文