已收录 273081 条政策
 政策提纲
  • 暂无提纲
Physics and astrophysics with gravitational waves from compact binary coalescence in ground based interferometers
[摘要] Advanced ground based laser interferometer gravitational wave detectors are due to come online in late 2015 and are expected to make the first direct detections of gravitational waves, with compact binary coalescence widely regarded as one of the most promising sources for detection. In Chapter I I compare two techniques for predicting the uncertainty of sky localization of these sources with full Bayesian inference. I find that timing triangulation alone tends to over-estimate the uncertainty and that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. Gravitational wave signals will provide a testing ground for the strong field dynamics of GR. Bayesian data analysis pipelines are being developed to test GR in this new regime, as presented in Chapter 3 Appendix B. In Chapter II and Appendix C I compare the predicted from of the Bayes factor, presented by Cornish et al. and Vallisneri, with full Bayesian inference. I find that the approximate scheme predicts exact results with good accuracy above fitting factors of ~ 0.9. The expected rate of detection of Compact Binary Coalescence signals has large associated uncertainties due to unknown merger rates. The tool presented in Chapter III provides a way to estimate the expected rate of specified CBC systems in a selected detector.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Physics and Astronomy
[效力级别]  [学科分类] 
[关键词] Q Science;QB Astronomy [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文