Photonic topological metamaterials
[摘要] Topology, a mathematical concept associated with global perspectives, was found to represent geometric aspects of physics. To date, various topological phases have been proposed and classified. Among them, topological gapless phases focusing on the degeneracies of energy bands serving as the singularities in the momentum space, attract much attention. Especially in the three-dimension, various topological semimetals have been proposed. With unit topological charge ±1, Weyl degeneracies have laid the foundation. Also, they show loads of exotic properties, such as Fermi arcs and chiral anomalies. Being relied on the band topology theory, topological gapless phases have also been transferred into classic systems, such as photonics, acoustics and mechanics. Here, we experimentally investigated photonic Weyl systems in the photonic continuum media, where electromagnetic intrinsic degrees of freedom play key roles in constructing the state space. Firstly, we researched chiral hyperbolic metamaterials, a type-II Weyl metamaterials, from which we directly observed topological surface-state arcs. Then, we report the discovery of ideal photonic Weyl systems, where helicoid structure of nontrivial surface states has been demonstrated. Finally, we construct photonic Dirac points, through analysing eigen reflection field, we found the correlation of topological charges in momentum and real spaces.
[发布日期] [发布机构] University:University of Birmingham;Department:School of Physics and Astronomy
[效力级别] [学科分类]
[关键词] Q Science;QC Physics [时效性]