已收录 273081 条政策
 政策提纲
  • 暂无提纲
Controlling local quantum fluctuations of light using four-wave mixing in an atomic vapour
[摘要] The spatial character of the noise on a light field affects its usefulness for imaging. Multi-spatial-mode (MSM) squeezed light has noise below the quantum noise limit in multiple spatial modes, and can be used for super resolution imaging. The generation of such light has long been an experimental goal within the field of quantum optics. This work introduces the theory behind the generation of squeezed light, and its measurement using a homodyne detector. A four-wave mixing process in a rubidium 85 vapour is used to experimentally generate squeezed light. The properties of this squeezed light are investigated, through the use of homodyne detection with a bichromatic LO. This thesis further investigates how the squeezed quadrature changes from amplitude to phase over a range of 40 MHz. The MSM nature of a squeezed light field is directly investigated. The field is shown to contain at least 75 squeezed spatial modes in the frequency domain, each squeezed at a level of up to -2.5 dB. This thesis develops techniques to measure the spatial character of noise on a light field in the time domain. These are promising techniques for the analysis of the MSM nature of a squeezed light in the time domain.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Physics and Astronomy
[效力级别]  [学科分类] 
[关键词] Q Science;QC Physics [时效性] 
   浏览次数:9      统一登录查看全文      激活码登录查看全文