已收录 273512 条政策
 政策提纲
  • 暂无提纲
Large scale estimation of distribution algorithms for continuous optimisation
[摘要] Modern real world optimisation problems are increasingly becoming large scale. However, searching in high dimensional search spaces is notoriously difficult. Many methods break down as dimensionality increases and Estimation of Distribution Algorithm (EDA) is especially prone to the curse of dimensionality. In this thesis, we device new EDA variants that are capable of searching in large dimensional continuous domains. We in particular (i) investigated heavy tails search distributions, (ii) we clarify a controversy in the literature about the capabilities of Gaussian versus Cauchy search distributions, (iii) we constructed a new way of projecting a large dimensional search space to low dimensional subspaces in a way that gives us control of the size of covariance of the search distribution and we develop adaptation techniques to exploit this and (iv) we proposed a random embedding technique in EDA that takes advantage of low intrinsic dimensional structure of problems. All these developments avail us with new techniques to tackle high dimensional optimization problems.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Computer Science
[效力级别]  [学科分类] 
[关键词] Q Science;QA Mathematics;QA75 Electronic computers. Computer science [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文