Control of oscillatory convolution operators via maximal functions in weighted L\(^2\) inequalities
[摘要] This thesis is concerned with the weighted L\(^2\) boundedness of a family of convolution operators on the line with oscillating kernels. It is proved that these convolution operators are bounded from L\(^2\)(w) to L\(^2\)(W) where the Borel measures w and W are in a correspondence given by a maximal function and there is a sense in which this maximal function is the best possible. It is also shown that a one-weighted L\(^2\) estimate holds for a family of convolution operators with radial oscillating kernels on n-dimensional space.
[发布日期] [发布机构] University:University of Birmingham;Department:School of Mathematics
[效力级别] [学科分类]
[关键词] Q Science;QA Mathematics [时效性]