已收录 273081 条政策
 政策提纲
  • 暂无提纲
How to stay in shape: overcoming beam and mirror distortions in advanced gravitational wave interferometers
[摘要] The Laser Interferometer Gravitational-wave Observatory (LIGO) aims to detect gravitational waves using laser interferometry. A direct observation has so far eluded scientists, and LIGO is currently being upgraded to Advanced LIGO, aiming for 10 times the current sensitivity. This upgrade will increase the complexity of the instrument and it is crucial that the behaviour of the interferometer is understood in advance, particularly the impact of distortions of the laser beam through interactions with mirrors which deviate from a perfect sphere. Many features of advanced detectors can influence the beam shape: thermal aberrations of the mirrors; high finesse cavities; and signal recycling. This thesis reports the modelling of beam and mirror distortions in such interferometers. The model developed throughout my PhD is detailed: beam distortions are described by the addition of higher order Gaussian modes. This model is used for Advanced LIGO commissioning tasks, required to reach design sensitivity. In particular I identify additional losses at the beam-splitter. I also report a feasibility study into using a completely different beam shape, an LG33 mode, as a future input beam. I show that advanced detectors are not yet compatible with the LG33 mode and derive the mirror requirements for a possible upgrade.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Physics and Astronomy
[效力级别]  [学科分类] 
[关键词] Q Science;QC Physics [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文