已收录 270995 条政策
 政策提纲
  • 暂无提纲
Elucidating the structures and catalytic properties of metallic nanoparticles
[摘要] The publications contained within this thesis present the application and development of computational methods for the study of metallic nanoparticles and nanoalloys. Principally these studies are dedicated to their structural characterisation and their interactions with small molecules; vital first steps toward understanding their role in key catalytic processes. Publications have also assessed the applicability of statistical mechanical methods and dispersion corrected DFT to these studies. Palladium-iridium nanoalloys, which are under current investigation for their catalytic properties, are studied extensively using a range of computational methods. Their interactions with hydrogen and benzene are probed in order to better understand their role in tetralin hydroconversion and the preferential oxidation of CO. Structures are revealed to reflect the strongly demixing behaviour of the bulk alloy, with nanosize effects seen in their interactions with hydrogen. The Birmingham Parallel Genetic Algorithm is presented and applied to the direct density functional theory global optimisation of Iridium and both gas-phase and surface supported gold-iridium nanoparticles. The program is shown to be capable of overcoming previous size restrictions while characterising quantum size effects in the iridium and gold-iridium structures. Significant differences are seen between the surface supported and gas-phase gold-iridium structures.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Chemistry
[效力级别]  [学科分类] 
[关键词] Q Science;QD Chemistry [时效性] 
   浏览次数:4      统一登录查看全文      激活码登录查看全文