已收录 273081 条政策
 政策提纲
  • 暂无提纲
Investigating the neurobiological changes associated with cerebellar transcranial direct current stimulation (TDCS) using magnetic resonance imaging (MRI)
[摘要] Anodal cerebellar transcranial direct current stimulation (tDCS) is known to enhance motor learning and it is suggested to hold promise as a therapeutic intervention. However, the neural mechanisms underpinning the effects of cerebellar tDCS are unknown. In addition, it is unclear whether this effect is robust across varying task parameters as if cerebellar tDCS is to be used clinically it must have a consistent effect across a relatively wide range of behaviours. Therefore, I performed four studies to address these questions. In the first three studies, I investigated the neural changes associated with cerebellar tDCS using magnetic resonance spectroscopy (MRS) and resting state functional magnetic resonance imaging (fMRI). My goal was to understand how cerebellar tDCS affected the metabolites within the cerebellum and functional connectivity between the cerebellum and distant brain areas. In addition, I wanted to understand if individual differences in how cerebellar tDCS influenced visuomotor adaptation could be explained by the effect tDCS had on neurobiology. Therefore, healthy participants underwent 3 sessions in which they received concurrent anodal cerebellar tDCS during visuomotor adaptation, MRS and resting state fMRI. I found that in 21% of participants cerebellar tDCS caused enhanced visuomotor adaptation, a decrease in GABA and increase in functional connectivity between the cerebellum and parietal cortex. This work suggests an ‘all-or-nothing’ type effect of cerebellar tDCS. In my final study, I examined the consistency of the cerebellar tDCS effect on visuomotor adaptation across a wide range of task parameters which were systematically varied. Each experiment examined whether cerebellar tDCS had a positive effect on adaptation when a unique feature of the task was altered. I found cerebellar tDCS to have an inconsistent effect on visuomotor adaptation. I conclude that such inconsistencies could be dependent on the amount of participants in each group that are receptive to cerebellar tDCS and suggest that at the very least it warrants substantially large sample size in cerebellar tDCS studies.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Chemistry
[效力级别]  [学科分类] 
[关键词] Q Science;QH Natural history;QH301 Biology [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文