已收录 272620 条政策
 政策提纲
  • 暂无提纲
Exploring the potential of high mass resolution and mass accuracy mass spectrometric techniques to track the environmental metabolism and fate of BFRS: application to the ambient environment
[摘要] This thesis investigates levels, sources, and transformation products of both legacy BFRs (LBFRs), and several novel BFRs (NBFRs). To accurately target these emerging pollutants in environmental matrices, an analytical method based on liquid chromatography coupled to high resolution mass spectrometry was developed. Sediment samples taken along the River Thames revealed the presence of both legacy and novel compounds, with concentrations of selected NBFRs approaching those of LBFRs. Tentative sources in the industrial area of London were identified, along with the presence of hydroxylated transformation products of polybrominated diphenyl ethers (PBDEs). Further, the employed technique facilitates the precise identification of metabolites and degradation products formed through in vitro and photodegradation studies. This provides valuable insight into the transformation mechanisms of NBFRs, including hydroxylation and debromination reactions. While 2,3,4,5-tetrabromobenzoic acid (TBBA) was the major metabolite of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (DBE-DBCH) was biotransformed to monohydroxy- DBE-DBCH and monohydroxy-triDBE-DBCH in trout liver microsomes. Photolysis of investigated NBFRs resulted in the formation of lower brominated species through stepwise reductive debromination as a main pathway. In addition, the use of mass defect plots and bromine isotopic pattern assist in the identification of relevant unknown chemicals within complex mixtures of halogenated compounds in dust and sediment samples.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Geography, Earth and Environmental Sciences
[效力级别]  [学科分类] 
[关键词] G Geography. Anthropology. Recreation;GE Environmental Sciences [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文