Development of kinetics, mathematical model and optimization of Fischer-Tropsch synthesis on cobalt-based catalyst
[摘要] The aim of this thesis is to develop a comprehensive mathematical model with detailed kinetics of Fischer-Tropsch (FT) and water gas shift reactions (WGS) to predict the results obtained from experimental study of cobalt-based FT synthesis conducted in a fixed-bed reactor. The kinetics’ parameters were evaluated for developed kinetics’ models, using an advanced optimization technique. Physical and statistical consistencies of the kinetics’ parameters were evaluated by various statistical methods. The developed model based on combination of alkyl/alkenyl mechanism (for production of n-paraffins and α-olefins) along with formate mechanism for WGS reaction provided the most accurate predictions. Model validation was conducted subsequent to completion of model calibration and estimation of proper kinetic parameters to ensure that model provides robust and realistic assessment of all parameters. Parametric studies were performed to investigate effects of operating conditions on the catalytic performance of FT synthesis with respect to products’ selectivities and syngas conversion. The operating conditions that have most significant effects were included in multi-objective optimization process using non-dominated sorting genetic algorithm to optimize selectivities and conversion. Pareto-front solutions can be used as dynamic database depending on specific requirement. Different operating condition can be selected from such database which privileges optimization of particular output.
[发布日期] [发布机构] University:University of Birmingham;Department:School of Engineering, Department of Mechanical Engineering
[效力级别] [学科分类]
[关键词] Q Science;QA Mathematics [时效性]