已收录 273081 条政策
 政策提纲
  • 暂无提纲
Development and optimization of small-scale radial inflow turbine for waste heat recovery with organic rankine cycle
[摘要] This thesis is an investigation of different strategies for efficient development and optimization of radial-inflow turbines (RIT) for small-scale ORC systems. A novel methodology based on mean-line modelling, multi-level optimization and experimental study was proposed and validated for a small-scale compressed air RIT. Extending the proposed approach to organic fluids necessitated the use of real-gas equations. Deficiencies of constant turbine efficiency assumption that was commonly used in the literature were highlighted. A novel approach for integrated modelling of organic RIT with ORC coupled with genetic algorithm optimization technique was developed to alleviate the errors during fluid selection and cycle analysis and also optimize the ORC performance. A novel dual-stage transonic RIT was developed to further improve the ORC performance. The efficiency of such turbine was improved further using 3-D CFD optimization technique. Such optimization proved to be very efficient as it substantially improved the turbine efficiency of both stages by about 10%. CFD results for the optimized dual-stage turbine at design point showed the turbine efficiency of 87.12% and ORC thermal efficiency of 13.19%.Such results were considerably higher than the reported values in the literature and highlighted the effectiveness of the combined mean-line and CFD optimizations developed in thesis.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Engineering, Department of Mechanical Engineering
[效力级别]  [学科分类] 
[关键词] T Technology;TD Environmental technology. Sanitary engineering [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文