已收录 272962 条政策
 政策提纲
  • 暂无提纲
Advanced modelling for the orthogonal cutting of unidirectional carbon fibre reinforced plastic composites
[摘要] This thesis provides new methodologies to improve the simulation of the orthogonal cutting of unidirectional carbon fibre reinforced plastic (UD-CFRP) composites. In a meso-scale approach, a new cohesive model was developed to overcome the excessive deformations shown by the generally implemented zero thickness cohesive elements. The smoothed particle hydrodynamics (SPH) approach was implemented to avoid element deletion during the analysis, taking place in the commonly used finite element method (FEM). The SPH enabled better prediction of the thrust force, more realistic chip formation mechanisms and the capability to simulate the bouncing back. However, the absence of a cohesive layer did not permit the collection of information on the interface behaviour. Therefore, a hybrid model, based on the FEM to SPH conversion, was deployed to introduce a cohesive layer, while avoiding element deletion. In-house experiments were conducted for validating the hybrid model. The hybrid approach consented implementation of the novel cohesive model while improving the thrust force prediction when compared with the FEM. It was able to capture the effect of a round cutting edge, as was highlighted in the experimental results. Experiments highlighted the strong influence of the rake angle and fibre orientation on the bouncing back.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Engineering, Department of Mechanical Engineering
[效力级别]  [学科分类] 
[关键词] T Technology;TJ Mechanical engineering and machinery [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文