已收录 273081 条政策
 政策提纲
  • 暂无提纲
Understanding the regulation of acid resistance in E. coli using whole genome techniques
[摘要] The ability of bacteria to thrive in a variety of host environments depends on their capacity to sense and respond to a wide array of stressors. E. coli encounters many stresses during transit through the gastro-intestinal tract, including acid stress. Acid stress response in E. coli is regulated by a complex network called AR2. The AR2 network comprises several local regulators that collate signals from multiple two-component systems (TCS) including RcsBD, EvgAS and PhoPQ. We combined lab-based evolution and whole genome re-sequencing to generate and identify mutations that confer increased acid resistance in E. coli K-12. All of these mutations map in the gene encoding EvgS, the sensor kinase of the EvgAS TCS. Using a luciferase reporter system and phenotypic assays we characterised the nature of these evgS mutations and their contribution to acid resistance. We also used high-temporal resolution luciferase reporter assays to uncover novel aspects of this network and implicate PhoP in the repression of acid resistance. Finally, we used our evgS mutants to characterise novel interactions within the AR2 network between the two component systems RcsBD and EvgAS. These results are discussed in relation to the role of regulatory networks in bacteria.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Biosciences
[效力级别]  [学科分类] 
[关键词] Q Science;QR Microbiology [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文