已收录 273081 条政策
 政策提纲
  • 暂无提纲
Development of nanomaterials based on bacteriophage-chromophore bioconjugates
[摘要] A continuing trend in nanotechnology is the use of materials of biological origin to develop novel nanomaterials. Accordingly, it is important to consider alteration of biomaterials to achieve optimal performance. One such entity that has garnered significant research attention is the filamentous M13 bacteriophage. This has been deployed in a broad range of nanotechnology applications, from the production of individually functional nanoparticles, to self-assembled materials with advanced properties reliant on their nano-scale structural characteristics. The present work had three principal aims: First to optimise the M13 bacteriophage major coat protein for labelling with exogenous compounds; second to investigate the use of dye-labelled M13 in a pathogen sensor; and third, the generation of a self-assembled nanomaterial based on dye-labelled M13. The results of this work demonstrate: 1) the generation of a mutant strain of M13 bacteriophage optimised to bind amine-directed exogenous compounds. A maximum increase in conjugation efficiency of 520 additional exogenous groups compared to the wild type was observed using absorbance spectroscopy; 2) the extension of the linear dichroism (LD) signal of M13 bacteriophage into the visible range by labelling with cyanine-based dyes; and 3) the generation of an aster-like self-assembled structure based on dye-labelled M13 bacteriophage, characterised by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The results of this work will aid the further development of a pathogen sensor based on the LD signal of M13 bacteriophage. The extension of the M13 LD signal into the visible region, and the maximisation of that signal by the mutagenic optimisations made here, will enable improved portability and sensitivity of the sensor. Finally, the development of a self-assembled, dye-labelled M13-based structure will have implications in the branch of research that aims to understand how alterations to nanomaterials lead to changes in the way they self-assemble.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Biosciences
[效力级别]  [学科分类] 
[关键词] Q Science;QR Microbiology [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文