已收录 273208 条政策
 政策提纲
  • 暂无提纲
Artificial evolution with Binary Decision Diagrams: a study in evolvability in neutral spaces
[摘要] This thesis develops a new approach to evolving Binary Decision Diagrams, and uses it to study evolvability issues. For reasons that are not yet fully understood, current approaches to artificial evolution fail to exhibit the evolvability so readily exhibited in nature. To be able to apply evolvability to artificial evolution the field must first understand and characterise it; this will then lead to systems which are much more capable than they are currently. An experimental approach is taken. Carefully crafted, controlled experiments elucidate the mechanisms and properties that facilitate evolvability, focusing on the roles and interplay between neutrality, modularity, gradualism, robustness and diversity. Evolvability is found to emerge under gradual evolution as a biased distribution of functionality within the genotype-phenotype map, which serves to direct phenotypic variation. Neutrality facilitates fitness-conserving exploration, completely alleviating local optima. Population diversity, in conjunction with neutrality, is shown to facilitate the evolution of evolvability. The search is robust, scalable, and insensitive to the absence of initial diversity. The thesis concludes that gradual evolution in a search space that is free of local optima by way of neutrality can be a viable alternative to problematic evolution on multi-modal landscapes.
[发布日期]  [发布机构] University:University of Birmingham;Department:School of Computer Science
[效力级别]  [学科分类] 
[关键词] Q Science;QA Mathematics;QA75 Electronic computers. Computer science [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文