A group G → Homeo_+(S^1) is a Möbius-like group if every element of G is conjugate in Homeo(S^1) to a Mobius transformation. Our main result is: given a Mobus like like group G which has at least one global fixed point, G is conjugate in Homeo(S^1) to a Möbius group if and only if the limit set of G is all of S^1 . Moreover, we prove that if the limit set of G is not SI, then after identifying someclosed subintervals of S^1 to points, the induced action of G is conjugate to an action of a Möbius group.
We also show that the above result does not hold in the case when G has no global fixed points. Namely, we construct examples of Möbius-like groups with limit set equal to S^1, but these groups cannot be conjugated to Möbius groups.