This thesis presents a very large-scale integrated circuit (VLSI) approach to the generation of musical sounds. The approach allows the generation of rich musical sounds using models that are easy to control and have parameters corresponding to many of the physical attributes of musical instruments. The generality of the approach for music synthesis is demonstrated by presenting several primitive sound generation mechanisms. Utilizing these primitives, several musical instruments are assembled to produce struck, plucked, and blown sounds. Refinements of the instruments are easily accomplished by adjusting or rearranging different functional components. A concurrent computing engine supporting the sound generation mechanisms is presented along with details of its VLSI implementation. Involved in the implementation is a new CMOS design methodology. Several alternative architectures for the computing engine are also presented and studied.