Mechanical testing of rapid-prototyping refractory ceramic print media
[摘要] Additively manufactured (3D-printed) refractory alumina-silica ceramics were mechanically tested to ascertain their ultimate tensile strengths and observed to determine their dimensional consistency over the printing and post-printing process. The equipment used to perform tensile testing was designed and built for use with custom-designed tensile test samples. Two ceramic powders, V18 (electronic-grade alumina, colloidal silica, and organic content) and 403C (200-mesh mullite, organic content, and magnesium oxide), were printed into test samples on ZCorporation ZPrinter® 310 and 510 machines, before being infiltrated with tetraethylorthosilicate (TEaS), and in some cases infiltrated again with a 40% by weight suspension of silica in water (Ludox). Ludox-infiltrated V18 proved to be the strongest medium, with a UTS of 4.539 ± 1.008 MPa; non-Ludox-infiltrated V18 had a UTS of 2.071 ± 0.443 MPA; Ludox-infiltrated 403C was weakest with a UTS of 1.378 ± 0.526 MPa. Within V18, greater silica content lead to greater tensile strength, but this did not hold true for 403C. 403C displayed volumetric shrinkage of about 1.5%, while V18;;s volumetric shrinkage ranged from 7% to 14%.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]