已收录 273208 条政策
 政策提纲
  • 暂无提纲
A Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems
[摘要]

A hierarchical timing simulation model for digital MOS circuits and systems is presented. This model supports the structured design methodology, and can be applied to both "structure" and "behavior" representations of designs in a uniform manner. A simulator based on this model can run several orders of magnitude faster than any other simulators that offer the same amount of information.

At the structure (transistor) level, the transient behavior of a digital MOS circuit is approximated by that of an RC network for estimating delays. The Penfield-Rubinstein RC tree model is extended to include the effects of parallel paths and initial charge distributions. As far as delay is concerned, a two-port RC network is characterized by three parameters: R: series resistance, C: loading capacitance and D: internal delay. These parameters can be determined hierarchically as networks are composed in various ways. The composition rules are derived directly from the Kirchoff's current and voltage laws, so that the consistency with physics is established.

The (R, C, D) characterization of two-port RC networks is then generalized to describe the behavior of semantic cells at any level of representation. A semantic cell is a functional block which can be abstracted by its steady-state behavior to interface with other cells in the system. As semantic cells are composed, the parameters of the composite cell can be determined from those of the the component cells either analytically or by simulation. A Smalltalk implementation of the hierarchical timing simulation model is also presented.

[发布日期]  [发布机构] University:California Institute of Technology;Department:Engineering and Applied Science
[效力级别]  [学科分类] 
[关键词] Computer Science [时效性] 
   浏览次数:13      统一登录查看全文      激活码登录查看全文