已收录 272929 条政策
 政策提纲
  • 暂无提纲
Stationary absolute distributions for chains of infinite order
[摘要]

Let {Ƶn}n = -∞ be a stochastic process with state space S1 = {0, 1, …, D – 1}.Such a process is called a chain of infinite order.The transitions of the chain are described by the functions

Qi(i(0)) = Ƥ(Ƶn = i | Ƶn - 1 = i (0)1, Ƶn - 2 = i (0)2, …) (i ɛ S1), where i(0) = (i(0)1, i(0)2, …) ranges over infinite sequences from S1.If i(n) = (i(n)1, i(n)2, …) for n = 1, 2,…, then i(n) → i(0) means that for each k, i(n)k = i(0)k for all n sufficiently large.

Given functions Qi(i(0)) such that

(i) 0 ≤ Qi(i(0) ≤ ξ ˂ 1

(ii)D – 1/Ʃ/i = 0Qi(i(0)) Ξ 1

(iii) Qi(i(n)) → Qi(i(0)) whenever i(n) → i(0),

we prove the existence of a stationary chain of infinite order {Ƶn} whose transitions are given by

Ƥ (Ƶn = i | Ƶn - 1, Ƶn - 2, …) = Qin - 1, Ƶn - 2, …)

With probability 1.The method also yields stationary chains {Ƶn} for which (iii) does nothold but whose transition probabilities are, in a sense, “locally Markovian.”These and similar results extend a paper by T.E. Harris [Pac. J. Math., 5 (1955), 707-724].

Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible.This proof allows us to achieve our main results without the use of limit theorem techniques.

[发布日期]  [发布机构] University:California Institute of Technology;Department:Physics, Mathematics and Astronomy
[效力级别]  [学科分类] 
[关键词] Mathematics [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文