已收录 272962 条政策
 政策提纲
  • 暂无提纲
Two new integral transforms and their applications
[摘要]

This thesis is in two parts. In Part I the independentvariable θ in the trigonometric form of Legendre's equation isextended to the range ( -∞, ∞). The associated spectralrepresentation is an infinite integral transform whose kernelis the analytic continuation of the associated Legendre functionof the second kind into the complex θ-plane. This new transformis applied to the problems of waves on a spherical shell, heatflow on a spherical shell, and the gravitational potential of asphere. In each case the resulting alternative representation ofthe solution is more suited to direct physical interpretation thanthe standard forms.

In Part II separation of variables is applied to theinitial-value problem of the propagation of acoustic waves in anunderwater sound channel. The Epstein symmetric profile is takento describe the variation of sound with depth. The spectralrepresentation associated with the separated depth equation isfound to contain an integral and a series. A point source isassumed to be located in the channel. The nature of thedisturbance at a point in the vicinity of the channel far removedfrom the source is investigated.

[发布日期]  [发布机构] University:California Institute of Technology;Department:Engineering and Applied Science
[效力级别]  [学科分类] 
[关键词] Applied Mathematics [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文