已收录 273081 条政策
 政策提纲
  • 暂无提纲
Experimental heat transfer at hypersonic mach mumber
[摘要] NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document.An experimental investigation was conducted in Leg 1 of the GALCIT 5 x 5 inch Hypersonic Wind Tunnel to determine the heat transfer coefficients of the laminar boundary layer on a cooled flat plate at a nominal Mach number of 5.8. As a consequence of the investigation, flat plate recovery factors were determined and the effect of condensation on heat transfer was noted. In addition qualitative results as to the laminar boundary layer transition and separation are also presented.The tests were conducted with a ratio of wall temperature to free stream temperature (T[subscript w]/T[delta]) of approximately 6.2; but under stagnation temperature conditions ranging from 200[degrees]F to 285[degrees]F. The stagnation pressure range of 60 psia to 115.5 psia provided a maximum Reynolds number of 2.1 x 10[superscript 6].A flat plate temperature recovery factor of .858 [plus or minus] .004 was determined, and it was concluded that the temperature recovery factor range of Mach number independence could be extended to a Mach number of 5.8. The independence of the recovery factor on Reynolds number up to the beginning of the laminar boundary layer transition was also substantiated.The heat transfer coefficients were obtained for a negative temperature gradient over a considerable portion of the plate. The effect of these gradients produced values considerably higher than would be expected for an isothermal surface. These results, when related the constant temperature case by a theoretical calculation, were in good agreement, with the theoretical results and the results of a friction investigation carried out at the same Mach number. The accuracy of the results was estimated to be [plus or minus]10% from a value of Nu/Re[superscript 1/2]Pr[superscript 1/3] = .285. There was no apparent effect on the heat transfer coefficient by condensation, but the adiabatic wall temperature appeared to be 2% lower than for the condensation free flow. Due to a step increase in thickness of the model at the ten inch station, the shock wave-boundary layer interaction appears to produce laminar boundary layer transition at a Reynolds number of 1.3 x 10[superscript 6], and upon reducing the Reynolds number further, the transition point is subjected to an adverse pressure gradient which results in a boundary layer separation.
[发布日期]  [发布机构] University:California Institute of Technology;Department:Engineering and Applied Science
[效力级别]  [学科分类] 
[关键词] Aeronautics and Mathematics [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文