Electron Acceleration at a High Beta and Low Mach Number Rippled Shock
[摘要] Electron acceleration in a high plasma beta and low Mach number quasiperpendicular shock is investigated by using two-dimensional full particle-in-cell simulation. Although efficient shock drift acceleration followed by reflection was observed in the previous one-dimensional simulation, no reflected electrons are found due to the effect of shock surface rippling for the particular parameters examined here. Structure of the shock transition region is complex in spite of the high beta and low Mach number situation. In addition to the ion scale fluctuations including the ripple, electron scale fluctuations are also recognized. Among these, downstream fluctuations are dominated by Alfvén ion cyclotron instability, the fluctuations in the foot are due to modified two-stream instability. Electron distribution function in the transition region indicates non-thermal nature. The energy gained by the non-thermal electrons is not explained merely by the shock drift acceleration, implying the importance of local wave- particle interactions.
[发布日期] [发布机构] Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Fukuoka, Kasuga; 816-8580, Japan^1;Department of Physics, Chiba University, 1-33 Yayoi-chou, Chiba, Inage-ku; 263-8522, Japan^2
[效力级别] 天文学 [学科分类] 天文学(综合)
[关键词] Electron acceleration;Electron distribution function;Ion cyclotron instability;Modified two-stream instabilities;One-dimensional simulations;Particle-in-cell simulations;Quasi-perpendicular shocks;Transition regions [时效性]