Improved Extended Multiplicative Scatter Correction Algorithm Applied in Blood Glucose Noninvasive Measurement with FT-IR Spectroscopy
[摘要] In order to improve the predictive accuracy of human blood glucose quantitative analysis model with fourier transform infrared (FT-IR) spectroscopy, this paper uses a method named improved extended multiplicative scatter correction (Im-EMSC), which can effectively eliminate the scattering effects caused by human body strong scattering. The principal components of the differential spectra are used instead of the pure spectra of the analytes in this algorithm. Calibrate the unwanted physical characteristic through the shape of the curve of principal components, and extract the original glucose concentration information. Im-EMSC can efficiently remove most of the pathlength difference and baseline shift influences. Firstly, Im-EMSC is used as a preprocessing method, and then partial least squares (PLS) regression method is adopted to establish a quantitative analysis model. In this paper, the result of Im-EMSC is compared with those popular scattering correction algorithms of multiplicative scatter correction (MSC) and extended multiplicative scatter correction (EMSC) preprocessing methods. Experimental results show that the prediction accuracy has been greatly improved with Im-EMSC method, which is helpful for human noninvasive glucose concentration detection technology.
[发布日期] [发布机构]
[效力级别] [学科分类] 光谱学
[关键词] [时效性]