Atomic Force Microscopy for Understanding Solvent Cointercalation into Graphite Electrode in Lithium Secondary Batteries
[摘要] The electrochemical processes occurring at the surface of a highly ordered pyrolytic graphite (HOPG) electrode were investigated byin situatomic force microscopy (AFM) to understand the solvent cointercalation involved in the formation of a surface film. AFM images were recorded under the conditions that AFM probe does not affect the electrode reaction. The AFM images show the morphological changes occurring at the electrode surface, indicating that two different types of reactions occurred in the film formation at the surface of the electrode. The formation of a blister structure was observed on the graphite surface, because of the decomposition of solvated lithium ions produced in the electrolyte solution and intercalation between the graphite layer and particulate materials. The solvent cointercalation reaction leading to the blister structure was more pronounced for the HOPG electrode with a higher value of mosaic spread.
[发布日期] [发布机构]
[效力级别] [学科分类] 光谱学
[关键词] [时效性]