已收录 273512 条政策
 政策提纲
  • 暂无提纲
Toward accurate and large-scale silicon photonics
[摘要] Silicon photonics, emerging from the interface of silicon technology and photonic technology, is expected to inherit the incredible integration ability of silicon technology that has boomed the microelectronic industry for half a century, as well as the unparalleled communication capability of photonic technology that has revolutionized the information industry for decades. Being a prevailing research topic in the past decade, silicon photonics has seen tremendous progresses with the successful demonstrations and commercializations of almost all of the key components, including on-chip light source, low-loss silicon waveguide, and ultrafast silicon modulators and detectors. It seems silicon photonics is ready to take off by following the successful path the microelectronic industry has been traveling through to achieve a large-scale integration of millions of photonic devices on the silicon chip with the aide of the well-established complementary metal-oxide-semiconductor (CMOS) technology. However, there remain some substantial challenges in silicon photonics, including the reliable design and fabrication of silicon photonic devices with unprecedented accuracy, and the large-scale integration of otherwise discrete silicon photonic devices. To this end, this thesis explored several examples as possible means of addressing these two challenges in silicon photonics. Two different ways of improving silicon photonic device accuracy were presented from perspectives of fabrication and device design respectively, followed by a successful integration demonstration where more than 4,000 components worked together on a silicon chip to form a functional large-scale silicon photonic system, representing the largest silicon photonic integration demonstrated to date.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:19      统一登录查看全文      激活码登录查看全文