Omnigradient Based Total Variation Minimization for Enhanced Defocus Deblurring of Omnidirectional Images
[摘要] We propose a new method of image restoration for catadioptric defocus blur using omnitotal variation (Omni-TV) minimization based on omnigradient. Catadioptric omnidirectional imaging systems usually consist of conventional cameras and curved mirrors for capturing 360° field of view. The problem of catadioptric omnidirectional imaging defocus blur, which is caused by lens aperture and mirror curvature, becomes more severe when high resolution sensors and large apertures are used. In an omnidirectional image, two points near each other may not be close to one another in the 3D scene. Traditional gradient computation cannot be directly applied to omnidirectional image processing. Thus, omnigradient computing method combined with the characteristics of catadioptric omnidirectional imaging is proposed. Following this Omni-TV minimization is used as the constraint for deconvolution regularization, leading to the restoration of defocus blur in an omnidirectional image to obtain all sharp omnidirectional images. The proposed method is important for improving catadioptric omnidirectional imaging quality and promoting applications in related fields like omnidirectional video and image processing.
[发布日期] [发布机构]
[效力级别] [学科分类] 光谱学
[关键词] [时效性]