Tensor products of commutative Banach algebras
[摘要] LetA1,A2be commutative semisimple Banach algebras andA1⊗∂A2be theirprojective tensor product. We prove that, ifA1⊗∂A2is a group algebra (measure algebra) of a locally compact abelian group, then so areA1andA2. As a consequence, we prove that, ifGis a locally compact abelian group andAis a comutative semi-simple Banach algebra, then the Banach algebraL1(G,A)ofA-valued Bochner integrable functions onGis a group algebra if and only ifAis a group algebra. Furthermore, ifAhas the Radon-Nikodym property, then the Banach algebraM(G,A)ofA-valued regular Borel measures of bounded variation onGis a measure algebra only ifAis a measure algebra.
[发布日期] [发布机构]
[效力级别] [学科分类] 数学(综合)
[关键词] [时效性]