已收录 273503 条政策
 政策提纲
  • 暂无提纲
Pressure and Temperature Effects on Stoichiometry and Microstructure of Nitrogen-Rich TiN Thin Films Synthesizedvia Reactive Magnetron DC-Sputtering
[摘要] Nitrogen-rich titanium nitride (TiN) thin films containing excess nitrogen up to 87.0 at.% were produced on (100) Si substrates via the reactive magnetron DC-sputtering of a commercially available 99.995 at.% pure Ti target within an argon-nitrogen (Ar-N2) atmosphere with a 20-to-1 gas ratio. The process pressure (PP) and substrate temperature (TS) at which deposition occurred were varied systematically between0.26 Pa–1.60 Pa and between15.0∘C–600∘C, respectively, and their effects on the chemical composition, surface morphology, and preferred orientation were characterized by energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). The EDS analysis confirms increasing nitrogen content with increasingPPandTS. The SEM images reveal a uniform and crystallized surface morphology as well as a closely packed cross-sectional morphology for all crystalline films and a loosely packed cross-sectional morphology foramorphous films. Films produced at lowerPPandTShave a pyramidal surface morphology which transitions to a columnar and stratified structure asPPandTSincrease.The XRD analysis confirms the existence of only theδ-TiN phase and the absence of other nitrides, oxides, and/or sillicides in all cases. It also indicates that at lowerPPandTS, the preferred orientation relative to the substrate is along the (111) planes, and that it transitions to a random orientation along the (200), (220), and (311) planes asPPandTSincrease and these results correlate with and qualify those observed by SEM.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 材料工程
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文