已收录 273185 条政策
 政策提纲
  • 暂无提纲
Effects of Artificial Ligaments with Different Porous Structures on the Migration of BMSCs
[摘要] Polyethylene terephthalate- (PET-) based artificial ligaments (PET-ALs) are commonly used in anterior cruciate ligament (ACL) reconstruction surgery. The effects of different porous structures on the migration of bone marrow mesenchymal stem cells (BMSCs) on artificial ligaments and the underlying mechanisms are unclear. In this study, a cell migration model was utilized to observe the migration of BMSCs on PET-ALs with different porous structures. A rabbit extra-articular graft-to-bone healing model was applied to investigate thein vivoeffects of four types of PET-ALs, and a mechanical test and histological observation were performed at 4 weeks and 12 weeks. The BMSC migration area of the 5A group was significantly larger than that of the other three groups. The migration of BMSCs in the 5A group was abolished by blocking the RhoA/ROCK signaling pathway with Y27632. Thein vivostudy demonstrated that implantation of 5A significantly improved osseointegration. Our study explicitly demonstrates that the migration ability of BMSCs can be regulated by varying the porous structures of the artificial ligaments and suggests that this regulation is related to the RhoA/ROCK signaling pathway. Artificial ligaments prepared using a proper knitting method and line density may exhibit improved biocompatibility and clinical performance.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 生物技术
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文