Structural and Electrochemical Characterization ofPureLiFePO4and Nanocomposite C-LiFePO4Cathodes forLithium Ion Rechargeable Batteries
[摘要] Pure lithium iron phosphate (LiFePO4) and carbon-coatedLiFePO4(C-LiFePO4) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating onLiFePO4particles. Ex situ Raman spectrum of C-LiFePO4at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms ofLiFePO4and C-LiFePO4showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively forLiFePO4where as in case of C-LiFePO4that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pureLiFePO4was 69% after 25 cycles where as that of C-LiFePO4was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.
[发布日期] [发布机构]
[效力级别] [学科分类] 材料工程
[关键词] [时效性]