已收录 273175 条政策
 政策提纲
  • 暂无提纲
Protein Adaptations in Archaeal Extremophiles
[摘要] Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 微生物学和免疫学
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文