Frequency of Drug Resistance Gene Amplification in ClinicalLeishmaniaStrains
[摘要] Experimental studies aboutLeishmaniaresistance to metal and antifolates have pointed out that gene amplification is one of the main mechanisms of drug detoxification. Amplified genes code for adenosine triphosphate-dependent transporters (multidrug resistance and P-glycoproteins P), enzymes involved in trypanothione pathway, particularly gamma glutamyl cysteine synthase, and others involved in folates metabolism, such as dihydrofolate reductase and pterine reductase. The aim of this study was to detect and quantify the amplification of these genesin clinical strains of visceral leishmaniasis agents:Leishmania infantum, L. donovani, andL. archibaldi. Relative quantification experiments by means of real-time polymerase chain reaction showed that multidrug resistance gene amplification is the more frequent event. For P-glycoproteins P and dihydrofolate reductase genes, level of amplification was comparable to the level observed after in vitro selection of resistant clones. Gene amplification is therefore a common phenomenon in wild strains concurring toLeishmaniagenomic plasticity. This finding, which corroborates results of experimental studies, supports a better understanding of metal resistance selection and spreading in endemic areas.
[发布日期] [发布机构]
[效力级别] [学科分类] 微生物学和免疫学
[关键词] [时效性]