Stability and Probability 1 Convergence for Queueing Networks via Lyapunov Optimization
[摘要] Lyapunov drift is a powerful tool for optimizing stochastic queueing networks subject to stability. However, the most convenient drift conditions often provide results in terms of a time average expectation, rather than a pure time average. This paper provides an extended drift-plus-penalty result that ensures stability with desired time averages with probability 1. The analysis uses the law of large numbers for martingale differences. This is applied to quadratic and subquadratic Lyapunov methods for minimizing the time average of a network penalty function subject to stability and to additional time average constraints. Similar to known results for time average expectations, this paper shows that pure time average penalties can be pushed arbitrarily close to optimality, with a corresponding tradeoff in average queue size. Further, in the special case of quadratic Lyapunov functions, the basic drift condition is shown to imply all major forms of queue stability.
[发布日期] [发布机构]
[效力级别] [学科分类] 应用数学
[关键词] [时效性]