Stabilized filter-supported bilayer lipid membranes (BLMs) for automated flow monitoring of compounds of clinical, pharmaceutical, environmental and industrial interest
[摘要] This paper describes the results of analytical applications of electrochemical biosensors based on bilayer lipid membranes (BLMs) for the automated rapid and sensitive flow monitoring of substrates of hydrolytic enzymes, antigens and triazine herbicides. BLMs, composed of mixtures of egg phosphatidylcholine (egg PC) and dipalmitoylphosphatidic acid (DPPA), were supported on ultrafiltration membranes (glass microfibre or polycarbonate filters) which were found to enhance their stability for flow experiments. The proteins (enzymes, antibodies) were incorporated into a floating lipid matrix at an air-electrolyte interface, and then a casting procedure was used to deliver the lipid onto the filter supports for BLM formation. Injections of the analyte were made into flowing streams of the carrier electrolyte solution and a current transient signal was obtained with a magnitude related to the analyte concentration. Substrates of hydrolytic enzyme reactions (acetylcholine, urea and penicillin) could be determined at the micromolar level with a maximum rate of 220 samples/h, whereas antigens (thyroxin) and triazine herbicides (simazine, atrazine and propazine) could be monitored at the nanomolar level in less than 2 min. The time of appearance of the transient response obtained for herbicides was increased to the order of simazine, atrazine and propazine which has permitted analysis of these triazines in mixtures.
[发布日期] [发布机构]
[效力级别] [学科分类] 分析化学
[关键词] [时效性]