已收录 273175 条政策
 政策提纲
  • 暂无提纲
Shedding Physical Synthesis Area Bloat
[摘要] Area bloat in physical synthesis not only increases power dissipation, but also creates congestion problems, forces designersto enlarge the die area, rerun the whole design flow, and postpone the design deadline. As a result, it is vital for physical synthesis tools to achieve timing closure and low power consumption with intelligent area control. The major sources of area increase in a typical physical synthesis flow are from buffer insertion and gate sizing, both of which have been discussed extensively in the last two decades, where the main focus is individual optimized algorithm. However, building a practical physical synthesis flow with buffering and gate sizing to achieve the best timing/area/runtime is rarely discussed in any previous literatures. In this paper, we present two simple yet efficient buffering and gate sizing techniques and achieve a physical synthesis flow with much smaller area bloat. Compared to a traditional timing-driven flow, our work achieves 12% logic area growth reduction, 5.8% total area reduction, 10.1% wirelength reduction, and 770 ps worst slack improvement on average on 20 industrial designs in 65 nm and 45 nm.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 电子、光学、磁材料
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文